Skip to main content
Something Fishy in the State of Glycoscience
A fish.
istock.com/Arsty

Glycans (sugars) are biological molecules that are attached to proteins through a process called glycosylation. They play a very important role in most biological processes in our bodies. Glycans help our complex organs develop, help cells talk to each other, and help cells stick to certain parts of the body or move throughout our body. In addition, the wrong type of glycosylation is associated with cancerous cells and may aid cancer progression and metastasis. Despite their known importance, it remains difficult for researchers to study glycans and glycobiology. This is in part because glycans are very complex in how they are built and attached to proteins.

A goal of the Common Fund Glycoscience program is to make the study of glycans more accessible for all researchers, even those who are not experts in the field. To do this, the program is developing new technologies that improve our ability to identify and study glycans and glycoproteins across different experiments. A paper from the lab of Glycoscience researcher Dr. Richard Cummings explains how his lab uses a jawless fish, called the lamprey, to generate a panel of completely new antibodies they call smart anti-glycan reagents (SAGRs). Lampreys produce a different kind of antibody from other animals, like mice or humans, that may be more specific in recognizing different glycans. The researchers took advantage of this by injecting lampreys with different types of glycans or glycoproteins and collecting the antibodies the animals produced in response to the glycans or glycoproteins. The researchers determined the DNA sequences that coded for the lamprey antibodies, and they can now use that information to generate large quantities of these antibodies in the lab. Knowing the DNA sequences also allowed the researchers to fuse the lamprey antibody proteins with another protein commonly used in laboratory assays, resulting in the SAGRs described above. Researchers can now use these SAGRs to better study glycans in a variety of cells or tissues relevant to biomedical science.

This discovery will help the biomedical research community identify and study more complex glycans and glycoproteins, leading to innovative biomedical discoveries and the potential to develop new treatments for disease. In addition to this publication, more information on the SAGRs technology can be found in this video (link is external)from Dr. Cummings.

Reference

This page last reviewed on August 25, 2023