We Accelerate Discovery

You are here

Printer

Program Snapshot

The goal of the Illuminating the Druggable Genome (IDG) Program is to improve our understanding of the properties and functions of proteins that are currently unannotated within the four most commonly drug-targeted protein families: the G-protein coupled receptors, nuclear receptors, ion channels, and protein kinases. Currently, the pilot program aims to create a data resource center, the Knowledge Management Center (KMC) that will catalog known information about the four protein families and obtain additional information about their function(s) so that investigators can determine whether a given protein is of interest. In this way, the KMC will be used to identify and prioritize unannotated proteins for further study.

IDG will develop and implement a public Web portal through which information can be transmitted to the broader community. The IDG program will also adapt and/or develop the technologies necessary to elucidate function within the four families of the druggable genome, if there is some indication that the function has relevance to disease. 

Read more...

 

IDG and KOMP2 Collaboration

The IDG Program is working closely with a complementary Common Fund effort, the Knockout Mouse Phenotyping (KOMP2) Program. By sharing information, IDG and KOMP2 will enhance the ability of both programs to prioritize genes of unknown function for study, and increase the pace and scientific depth of phenotyping studies, accelerating the discovery of biology that is relevant to health and disease.

Learn more about the IDG/KOMP2 collaboration.

Publications from IDG Investigators: Exploring the Druggable Genome

NEW! Resources developed in the laboratory of Dr. Lars Juhl Jensen. 
            TISSUES: Tissue Expression Database 
            RESTful Open Annotation (REST-OA) API provides a simple way for sharing             annotations online. 

A recent article published in Nature Structural and Molecular Biology  describes PRESTO-Tango; a screening assay developed by Dr. Bryan L. Roth and colleagues at the University of North Carolina, Chapel Hill. PRESTO-Tango allows for the simultaneous investigation of every nonolfactory G protein-coupled receptor in the human genome. The methods and reagents developed are freely available to the scientific community.   

Dr. Gary Johnson at the University of North Carolina, Chapel Hill published a paper in Cell Reports  that used a global approach to study the effects of adaptation of the kinome (the full complement of human protein kinases) and its role in drug resistance during cancer treatment.

                                                 
    

 

                                                       

  

            Illuminating the Druggable Genome

 

 

Up to Top