Neural Control and Neuromodulation of Lower Urinary Tract Function

William C. de Groat University of Pittsburgh

Topics

- Anatomy and functions of the lower urinary tract
- Peripheral innervation (efferent and afferent nerves)
- Central neural control of the lower urinary tract
- Lower urinary tract dysfunction
- Treatment of dysfunction (neuromodulation)
- Research opportunities

Anatomy and Functions of the Lower Urinary TractFunctionsTwo Types of Voiding

- 1. Urine storage
 - Reservoir: Bladder
- 2. Urine release
 - Outlet: Urethra

Parkinson's, MS, stroke, brain tumors, spinal cord injury, aging, cystitis

Lower Urinary Tract Innervation

Two Types of Visceral Afferent Neurons: Bladder & Bowel

spinal cord

urinary bladder

Aδ-fibers responsible for normal bladder sensations C-fibers contribute to urgency, frequency and incontinence

Afferent Sensitivity may be Influenced by Substances Released from the Urothelium

The Bladder Urothelium

Afferent Nerve fiber

Urothelial-Afferent Interactions

Interaction of Sensory Pathways of Multiple Pelvic Organs

Convergent

Dichotomizing

Somatic and Visceral Afferent Convergence: Contribution to Visceral Referred Pain

Micturition Switching Circuit

Spinal Storage Reflexes

Supraspinal Voiding Reflexes

Voluntary Control of Voiding

Sensation of Bladder Filling

Prepared by C. J. Fowler

Voluntary Control of Voiding

Sensation of Bladder Filling

Inhibition of the Periaqueductal Gray (PAG) and Pontine Micturition Center (PMC) by the Forebrain Promotes Urine Storage

Urine Storage

Excitatory Signals from the Forebrain Elicits Voluntary Voiding

Coordinated Bladder Contraction and Urethral Sphincter Relaxation

Forebrain Circuitry Controlling Voiding

Pathophysiology of OA

Dysfunction of the detrusor or neural pathways alters the balance of inhibitory and excitatory stimuli critical to voluntary bladder control

1. Phasic smooth muscle contractions

References: 1. Fowler CJ.

Neuromodulation of the Micturition Switch

Sacral Neuromodulation

- FDA-approved therapy: urinary urge incontinence, urinary urgency-frequency, non-obstructive urinary retention, fecal incontinence
- 2. Experimental:
 - interstitial cystitis, pelvic pain,

Release of neurotransmitters, activation of receptors and modulation of CNS function

Sacral Spinal Nerve Root

Questions about Neuromodulation

- What types of axons are activated?
- What neurotransmitters are released?
- What neurotransmitter receptors are activated?
- Where does the neuromodulation occur (Urinary bladder, Peripheral nervous system, Spinal cord, Brain, CNS sensory or motor pathways?
- Do different types of neuromodulation act by the same mechanism?

Pudendal Neuromodulation (PNS)

Site of Action: Spinal cord

Mechanisms: Activation of GABAergic Inhibition and activation of hypogastric inhibitory pathway to the bladder

Properties: Stimulation is effective over a narrow range of frequencies (3-10 Hz) and effects require continuous stimulation.

Tibial Neuromodulation (TNS)

Site of Action: Brain Stem

Mechanisms: Activation of opioid receptors and enkephalinergic inhibition.

Properties: Stimulation effective over a wide range of frequencies (3-30 Hz) and persists for at least two hours after the termination of stimulation.

FDA approved: 30 min therapy administered every week for 12 weeks and then booster treatments once a month.

(Matsuta, Y et.al., AJP Reg., 305:R126, 2013)

The effects of spinal cord injury

•Initial bladder areflexia and loss of voluntary control

•Later development of automatic micturition

•Bladder hyperreflexia or autonomous detrusor hyperactivity

•Unmasking of a primitive neonatal bladder reflex

•Loss of bladder sphincter coordination (Detrusor-Sphincter-Dyssynergia)

•Thus after neural injury the bladder doesn't store well or empty well

Supra-lumbar lesion

Bladder Sphingter Coordination: Effect of Spinal Cord Injury

Emergence of C-Fiber Micturition Reflex After Chronic Spinal Cord Transection

Pudendal Neuromodulation of the LUT After Spinal Cord Injury in Cats

(Tai, C., et.al., Neurourol Urodynam, 26:879, 2007)

Research Opportunities

- Mechanisms of prolonged effects of neuromodulation (NM).
- Transmitters mediating clinical effects of NM.
- Test drug-NM combination therapies.
- Test a combination of sphincter motor axon block and reflex bladder activation to promote voiding after spinal cord injury.
- Determine if different types of neuromodulation act by similar mechanisms.
- Examine the effects of sympathetic nerve stimulation on LUT.
- Examine possible synergistic interactions between NM evoked by stimulation at different sites.
- Examine the mechanisms of urothelial-afferent interactions.
- Examine the function of intramural reflexes in the bladder.
- Examine the physiological functions of dichotomizing afferents.
- Study pelvic organ function with optogenetics methods.

Fig 5

Pudendal Nerve

PAG-PMC

Tibial Nerve

PAG-PMC

