Modulation of Cardiac Efferent Signaling: A New Strategu for Heart Failure Therapy? *Technology Response: Heart Failure*

Hani N. Sabah, Ph.D., FACC, FCCP, FHRS Professor of Medicine, Wayne State University Director of Cardiovascular Research Henry Ford Health System

Neuromodulation for Treatment of Heart Failure

Vagus Nerve Stimulation

RheosTM Electrical Activation Carotid Baroreflex System

Spinal Cord Stimulation Implantation in Epidural Space

Protein Expression of TNFα

TNFα Plasma Levels (pg/ml)

Protein Expression of IL-6 (densitometric units)

IL-6 Plasma Levels (pg/ml)

Expression of Nitric Oxide Synthases in LV Tissue

△ LV Systolic Indexes Treatment Effect

Sabbah et al, Circulation Heart Failure, 2011

Percent of Dogs Induced into VT or VF

Control (n = 7) BAT (n = 7)

Wang...Sabbah et al, Circulation 2008

Fluoroscopic Image of Implant in Epidural Space

Note: Midline Electrode Location T3-T5

pepsi HENRY FORD HOSPITAL 10 060 lesd placemenf hs Hicor DCM 11/10/2010 8:47:21 AM LAO: 0.3 CAUD: 1.1 [Plane A] Scene: 1 Frame: 16

- Single, Linear ST 50cm 8 Contact Lead
- Epidural Access: L2/L3 or L3/L4
- Lead Placement: T3-T5
- Stimulation: Bipolar
- Frequency: 50 Hz
- Pulse Width: 200 µs
- Amplitude: Set to 90% Motor Threshold(0.2 to 1.9 mA)

Electrodes 1 and 3: Cathodes, 50%

Electrodes 6 and 8: Anodes, 50%

SCS in Dogs with Post AMI Heart Failure

Adapted from Lopshire et al., Circulation 2009;120:286-294

Pilot SCS Study in Dogs with HF

Clinical Experience Pilot Study

32 patients implanted as part of a European Safety/Feasibility Trial

Exercise Capacity – 6 min Walk

MLHFQ

LV Ejection Fraction

P-values are versus paired baseline

A Randomized Study to Investigate the Safety and Efficacy of Cardio Fit® for the Treatment of Subjects with Heart Failure and Left Ventricular Dysfunction

CAUTION - Investigational Device. Limited by Federal (or United States) law to investigational use

NECTAR-HF Clinical Feasibility Trial

• NEuroCardíac TherApy for Heart Failure (NECTAR-IHF)

> 96 patient, VNS vs. OMT, 2:1 randomization 6 months follow-up NYHA III, EF ≤35%

Presented at ESC 2014

No significant improvement in EF or ESV (echo) Significant improvement in NYHA Significant improvement in MLHFQ

Nearly 80% of patients on VNS received a

stimulation current between 0.5 and 1.0 mA far below what is needed to activate nerve B-fibers (2 week titration period)

ANTHEM-HF Clinical Feasibility Trial

Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Heart Failure

60 patient (randomized to Left VNS n=31 or Right VNS n=29) 6 months follow-up NYHA III, EF ≤35%

Presented at ESC 2014

Significant improvement in EF (L=R) Significant improvement in 6 minute walk (R>L) Significant improvement in MLHFQ (L=R)

All patients received a stimulation current between 2.0 ± 0.6 mA with constant 10Hz frequency (10 week titration period)

Defeat HF Trial - Failed

- Determine the feasibility of chronic SCS stimulation in heart failure patients
- Multi-center, randomized (3:2 randomization)
- 30 study centers; 195 subjects
- Two arm: Treatment vs. Control
- 6 month follow-up
- Stimulation 12 hrs/day
- Maximally tolerated stimulation near T3-T5
- Stimulation Parameters: Rate = 50 Hz, Pulse width = 0.2 ms
- Study Endpoints
 - Cardiac remodeling (LV dimensions)
 - Exercise tolerance (change in maximal oxygen uptake)
 - Biomarker (BNP)

Selective Stimulation

Cardiofit Lead

- 5 contacts/rings
- Ring 4: Anode. Narrow for high current density
- Rings 2,3: Cathodes.
 Wide for low current density
- Rings 1,5: Neutral. Reduce current leakage into surrounding tissue
- Space between rings 2,3 to reduce nerve contact area

Cyberonics VNS Lead

Neuromodulation – Open Questions Applicable to: VNS – BRS-SCS

Technical Issues

- Ideal current ?
- Ideal frequency ?
- Ideal duty cycle ?
- Ideal location/site of lead implantation? Left or right or both ?
- Timing of delivery during cardiac cycle ?
- Causes for pain and discomfort ? Current leak anatomy ?
- Percutaneous vs. surgical approaches ?
- Transcutaneous battery charges ?
- **Remote activation/stimulation ?**
- Dose one size fit all ????

Neuromodulation – Open Questions Applicable to: VNS – BRS - SCS

Other Clinical Issues

- Organ injury resulting from long-term stimulation ?
- Value on top of background therapy ?
- When to implant during the course of the disease ?
- Confirmation of target engagement during implant ?
- Identification of responders vs. non-responders ?
- Biomarkers for follow-up ?
- Contraindicated populations ? Rhythm abnormalities ?

