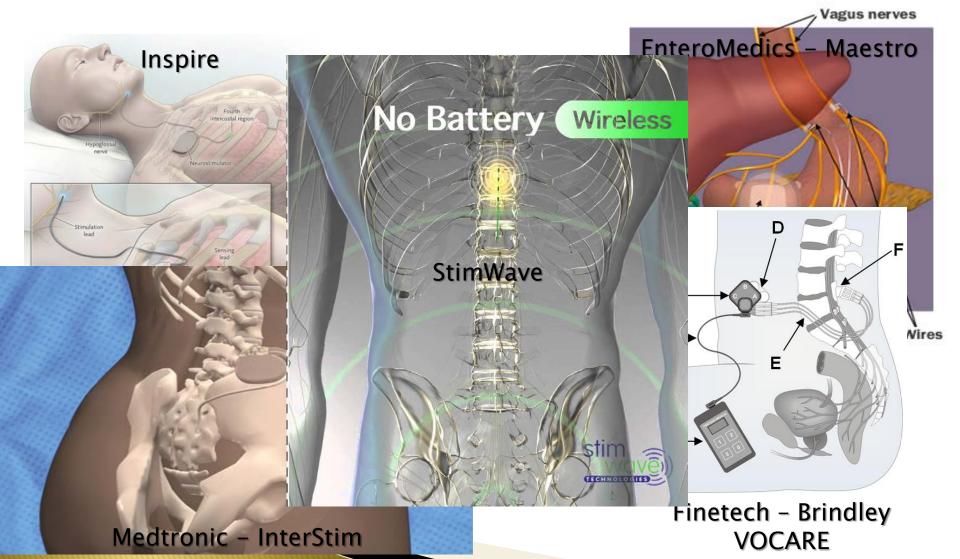

Current Neuromodulation Approaches for End-Organ Systems

Kip Ludwig, Ph.D. Program Director for Neural Engineering NIH/NINDS


An Old Idea - New Opportunities

Braunwald,1970

Vagal stim for mapping to spleen in 1870's & 1880's (Bulgak, Roy, Masuda)!

Recent FDA Commercial Approvals Neuromodulation: End-Organ Systems

Notable CE Marks: Neuromodulation of End-Organ Systems

Heart Failure

- CVRx[®] Neo (Baroreceptors)
- BioControls CardioFit (Vagus)
- Cyberonics (Vagus, submitted)
- Hypertension
 - CVRx[®] Neo (Baroreceptors)
 - Renal Denervation
 - Medtronic, Boston Scientific, St. Jude, Covidien, ReCor
- Obesity/Type II Diabetes
 - MetaCure Diamond (stomach muscles)

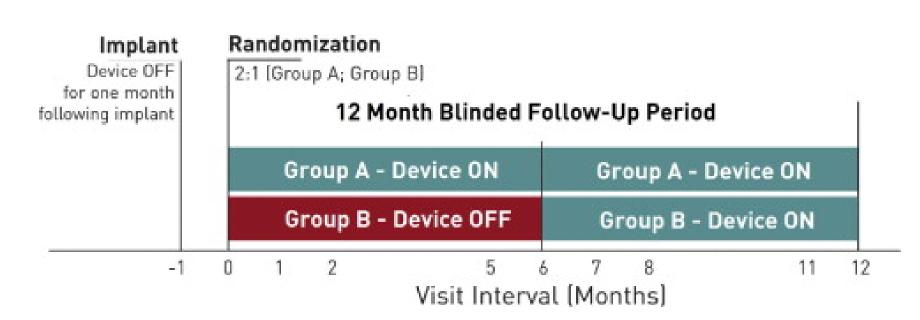
Treatments in Clinical Studies – Just the Vagus, Not Exhaustive

- Heart Failure
- Hypertension
- Depression
- Anxiety
- Epilepsy
- Inflammation
- Stroke Rehab/Plasticity

- Tinnitus
- World Peace
- Diabetes
- Obesity
- Bronchoconstriction/Asthma
- Pain, Migraines, Cluster Headaches

Note: I only made one of these up

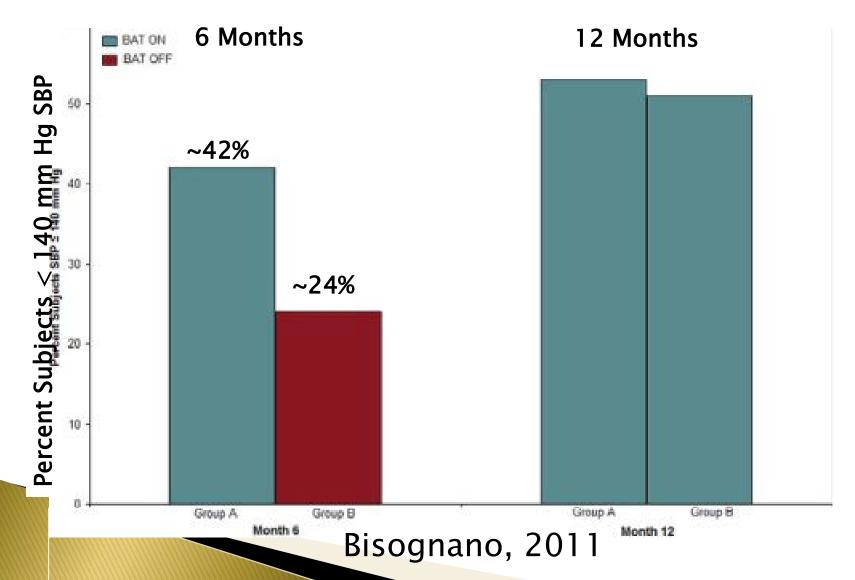
RCTs Not Meeting Primary Efficacy Endpoint after CE Mark

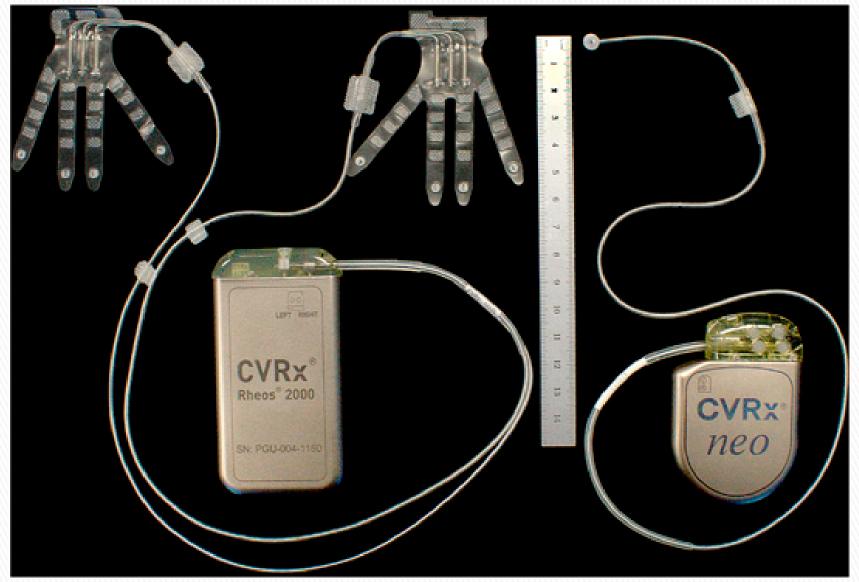

- Enteromedics EMPOWER
 - 24.4% Excess Weight 'On' versus 15.9% 'Sham'
 - Primary endpoint >10% difference
 - FDA Panel in June: 8 to 1 safety, 4 to 5 efficacy; 6 to 2 for approval (1 abstention)
- Medtronic SYMPLICITY
 - 14 mmHg SAP Drop versus 12 mmHg in Sham Arm
- Boston Scientific NECTAR Trial
 - Cardiac remodeling 'Open Label' = CE Mark
 - No difference between 'On' and Sham Arm
- BROADEN/RECLAIM (Depression)
- SANTE Trial (Epilepsy)

CVRx®: Stimulation of the Baroreflex

Gassler, 2014

U.S. Pivotal Trial Design

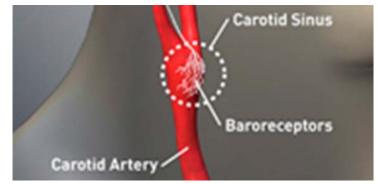



Bisognano, 2011

U.S. Trial Results

- > 265 patients randomized
- Failed Procedural Safety Endpoint (74.8%, 82% goal)
- Failed Acute Efficacy Percent in 'On' and 'Sham' with >10mmHg SBP Drop at 6 months (54% vs. 46%)

% of Patients with Controlled Hypertension



Gassler, 2014

Biology Unknowns for Designing Next-Gen Electrode

- Stimulating for effect? (Baroreceptors, SIZ, Proximal Afferents or CSN)?
- Stimulating to cause side effects (Pain)?
- Minimum functional unit to create these effects?
- Locations/densities of each in the canine and human?
- Variance in anatomy from subject to subject?
- Anchoring technique prevent electrode movement? Effectiveness given multiple medications and pathologies? Impact of anesthesia and edema on surgical mapping?

Long-term impact of adaptation?

Limitations of the Animal Model

- Electrodes don't scale linearly
 - > Electric field fall off from a dipole is $1/r^2$
 - (if '1' at 10 microns, 1/4th strength at 20 microns, 1/16th at 40 microns)
 - Edge effects more pronounced at smaller sizes
 - > Insulation to steer current depends on size
 - >Anode/cathode spacing

- Differences in orientation/size/degree of myelination of nerve fibers matter
- Fundamental differences in physiology
- Side effects are difficult to assess
- Range of pathologies that cause the same symptoms, drug interactions

Limitations of Surgical Mapping in Humans

- Limited time means art, not science
 n = 1
- Engagement at point of interface difficult to assess
 - Surrogate biomarkers of effect
 - Biomarkers with high variance
 - Blood Pressure, Heart Rate
 - Anesthesia impacts circuit function
 - Bloody field = E-field not going where it will chronically

Location, Location, Location

- Techniques to selectively activate by fiber type:
 - Size
 - Degree of myelination
 - Receptor types may be frequency responsive
- Techniques to selectively activate by location:
 - Asymmetrical pulses
 - Blocking currents
 - Chronaxie chasing
- Techniques tested via modeling and acute demonstrations, little published chronic validation
- Difference in threshold 1/5th to 5x
- Distance from an electrode still biggest driver (1/r²)!

'Neural Language of Love' – Milton Morris™

Why Weren't My Biological Unknowns 'Known'

Tools didn't exist

- No baroreceptor specific stain
- Difficult to record baroreceptor, SIZ, afferents, CSN specifically, and chronically
- Difficult to record nerves for side effect at all
- No way to determine extent of recruitment (can't see e-field)
- No tools to modulate with finer spatial resolution and cell-type specificity
- Functional anatomical maps with variance don't exist in animals, much less humans
- Limited opportunity to establish animal relevance with human data

SPARC – These problems are tractable in the near-term

Thank You! Questions?

Kip.Ludwig@nih.gov