SPARC Workshop

Human Use - Cross-Cutting Technologies – Part II

Kevin L. Kilgore, Ph.D.

MetroHealth Medical Center Louis Stokes Cleveland VAMC Case Western Reserve University

Nerve Block/Modulation

- **Temporary Block**: reversible (within seconds to minutes) arrest conduction of action potential along a neuron
- **Modulation**: increase or decrease the excitability of a neuron (or group of neurons)
- These features are particularly relevant to SPARC applications, because downregulation is often as important as upregulation (in contrast to most neuromuscular applications)

Nerve Block/Modulation

- Technologies available
 - Kilohertz Frequency Alternating Current (KHFAC)
 - Direct Current
 - Infrared (thermal) block
 - Optogenetics
 - Magnetic
 - Others...?

KHFAC – Brief Tutorial

- Illustrates the difficulties that we face in applying "new" technologies to "not fully characterized" physiology
 - In contrast to motorneuron->skeletal muscle
- Illustrates the critical need for clinicians and engineers to work directly together if SPARC initiatives are to be successful

KHFAC – Back to the friendly confines of the somatic nervous system

Nerve Conduction Block Experimental Setup

KHFAC Instant Reversibility

KHFAC Graded Block

Block in Sensory Nerve

Direct Effect of KHFAC on Neural Structures

- KHFAC can block conduction of action potentials (within 10ms in some cases)
- KHFAC block can be quickly reversible (within 1s)
- Block effect is strongly dependent on amplitude
- At block threshold and above, activation *always* occurs at startup ("onset response")
- There is a lot of unexplored territory in this field
- Neural response to KHFAC is complex
- Almost all of the basic work to date is in myelinated nerves

20 Hz Stimulation

Typical stimulation frequency – neural response is simple and very well characterized

Duration of Delivery	hours		
on of C	minutes		
Durati	seconds		
	ubthreshold	activation	Not Safe

```
Amplitude (Vpp)
```

Neural Response at ~5kHz and higher

The neural response to KHFAC is extremely complex.

This map only considers the amplitude-time domain!

KHFAC Block

- You must know the dose you are delivering
 What is the real output of the generator?
- You must know what the KHFAC is doing to the nerve fibers
 - Activated? Blocked? Nothing? Cooked?
- Requires a methodical approach
 - See Canning/Kollarik approach start with the simplest system possible and work up to the complete in-vivo system

DC Block with No Onset Response Well known in the literature

Petruska, Hubscher, Johnson : Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei. Exp Brain Res 1998.

Considering Direct Current Nerve Block

- The current controlled waveform is a charge-balanced direct current waveform (CBDC) consisting of a cathodic blocking phase followed by a anodic recharge phase.
- **The total charge delivered was less than the Q value for Pt-Black and IrO_2 electrodes.**

The length of the recharge was selected to return 100% of the charge at a current level of MetroHealth MetroHealth Rehabilitation Research Conternation Development Veterans Health Administration Development Uters - www.the rest is a current level of MetroHealth Conternation Conternation Conternation Development Uters - www.the rest is a current level of MetroHealth Conternation C

Nerve Block and Neuromodulation

- Features Relevant to SPARC
 - Downregulation of neural activity
- Availability and Human Use Status
 - KHFAC human use
 - Other modalities animal only
- Areas for Research and Development
 - Consistent and repeatable block
 - Chronic safety
 - Small fiber block (esp. C-fiber)
 - Targeted block of small fibers

Nerve Cuff Electrodes

- Features Relevant to SPARC
 - Generally activate whole nerve/fascicles
 - Generally >1mm diameter nerves
- Availability and Human Use Status
 - 10+ years of human use
 - Have been used on vagus
- Areas for Research and Development
 - Target <1mm diameter nerve branches
 - Activation of specific fibers sizes
 - Surgical techniques for electrode placement

Implanted Electrodes in Proximity to Nerve

- Features Relevant to SPARC
 - Can target nerves of any size
 - Easy to implant
 - Poorly controlled selectivity
- Availability and Human Use Status
 - Widely used in humans and widely available
- Areas for Research and Development
 - Usefulness and practicality for targeting small nerve branches

Optrodes for Neural Activation

- Features Relevant to SPARC
 - High degree of specificity
- Availability and Human Use Status
 - Not yet available for human use
- Areas for Research and Development
 - Use as tool in animal models?
 - Groundwork for human use (safety, practical designs)
 - Possible unique features, such as activation and block; fiber type selectivity

Non-invasive Neural Activation

- Features Relevant to SPARC
 - Non-invasive
 - Poor specificity
- Availability and Human Use Status
 - Low threshold for human use
- Areas for Research and Development
 - Possibility of activating autonomic neural structures from skin surface

Sensor Modalities

- Blood Pressure/Bladder Pressure
- Biomarkers of various sorts
- pH
- Ions
- Cardiac output
- Airway resistance
- Glucose
- More to come...

Sensor Systems

- Features Relevant to SPARC
 - Most systems will require regulation to a mean, not to an extreme
- Availability and Human Use Status
 - Few have extensive human use
- Areas for Research and Development
 - Identify important modalities
 - Chronic efficacy of sensors
 - Accuracy of sensor data
 - Incorporation into complete system

Implant Systems

- Stimulators
- Stimulator/sensor systems
- Modular systems

Implant Systems

- Features Relevant to SPARC
 - In many cases, will require stimulation, block, sensing, and signal processing
- Availability and Human Use Status
 - Some have extensive human use
- Areas for Research and Development
 - Identify system requirements
 - Regulatory requirements

Cross-Cutting Technology Summary

- Technologies for Activation
- Technologies for Block/Modulation
- Sensor Technologies
- System Technologies
- Signal Processing
- Computational Modeling