

SPARC Closing the Loop Considerations for Human Studies

Biomedical Engineering FLORIDA INTERNATIONAL UNIVERSITY

Ranu Jung rjung@fiu.edu February 25-26, 2015

H National Institute of Biomedical Imaging and Bioengineering

Eunice Kennedy Shriver National Institute of Child Health and Human Development

NeuroDesign

Closing the Loop

address key issues in design, development and delivery of safe and robust biohybrid adaptive systems

Important trends for closing the loop:

- neurotechnology to provide targeted neural sensing and activation
- neurotechnology with adaptive capabilities
- neurotechnology that is increasingly integrated with biological systems
- neurotechnology for personalized precision treatment

Investigational Device Exemption (IDE)

to conduct studies with your New Device

- Overview of Clinical Plans Methods, Facilities and Controls
 - Experimental Plan
 - Study Design
 - Sample Size
 - Outcome Measures
 - Expected Results
- Prior Investigations
 - Non-Clinical Test Data
 - Clinical Test Data
 - Investigational Plan
 - Purpose
 - Clinical Protocol
 - Risk Analysis
 - Monitoring
 - Records and Reports

- Device Manufacturer and Suppliers
- Manufacturing Process Info
- Manufacturing Compliance Info
- Device Design and Manufacturing
 - Design Inputs
 - Design Outputs
 - Design Verification
 - Design Validation
 - Manufacturing Controls
 - Packaging and Usage
- Investigator Agreements
- IRB information
- Labeling

Closing the Loop

address key issues in design, development and delivery of safe and robust biohybrid adaptive systems

1st order challenges:

placing the neural interface at the appropriate location and keeping it there

2nd order challenges:

delivering meaningful stimuli, interpreting neural codes

3rd order challenges:

dealing with variability, complexity, plasticity

- placement at a location that enables <u>selective</u> communication with the target tissue
 - proximity
 - practical surgical procedures
 - stability of the interface
- biocompatibility
 - chemical properties
 - biological effects
 - mechanical
 - charge/charge density

Proximity to Target

Invasiveness

Modified from DelValle & Navarro, Int Rev Neurobiol 2013

Proximity to Target

Bladder Control- Closed Loop (Access- Dorsal roots; Control - Sacral root stim) Surgical reduction in rat of L6 dorsal root into 100µm rootlets

FLORIDA INTERNATIONAL UNIVERSITY

Proximity to Target

Dhillon et al. J Hand Surg 2004

Surgical Procedures

• Surgical tools and procedures for electrode and lead management

LIFE implanted with tungsten needle (cadaver study)

Multi Lead Multi Electrode management system

Expose the nerve; remove fascia and other connective tissue to isolate (1) the nerve

Remove the sutures from the outer sheath; lift the end sheath and bundle of protective sheaths along the slit of the outer sheath

Remove the end sheath to free the individual LIFEs encased in protective sheaths; remove one protective sheath to expose a LIFE

Thota et al, J Neurosc Meth 2014

Stability of the Interface

- Anchoring the electrode
- Mechanical Stress
 - Effect on tissue
 - Effect on electrodes

mechanical testing (FIU)

e-dura (EPFL)

- Distributed sensing and recording
 - Multiple sites on one lead
 - Multiple leads
 - Need robust management system

DIME (FIU)

IEEE Spectrum, Jan 2015

Distributed intrafascicular multielectrode lead

Thota et al, J Neurosci Meth 2014

http://professional.medtronic.com/pt/ion3

Stability of the Interface

Integrating electronics with the electrode

stretchable electronics

 New opportunities present new challenges mass, heat wireless-location under skin durability

Kim et al, 2009

Biocompatibility

Collias & Manuelidis, J Neurosurgery, 1957 local tissue (brain) response to the electrode

concerns:

- systemic damage
- local damage
- encapsulation

factors:

- size
- location
- materials
- charge transfer
- mechanical compliance
- coatings
- manufacturing processes
- implantation techniques

Kuntaegowdanahalli & Jung (Unpublished)

Stimulation

Recording

- spatially distributed
 - temporally complex
 - mismatch in timescales between neurons and physiological processes
 - interconnectivity enables context dependence

Delivering Meaningful Stimuli

- vary location, frequency, amplitude
 discrete, graded, stable sensations
 - freq and amplitude → naturalistic

Delivering Meaningful Stimuli

Autonomic innervation:

- complex codes
- timescale mismatch
- State/context dependence

Kandel et al. Principles of Neuroscience

control system complexities:

- multiple-input multiple-output MIMO control
- nonlinear mappings
- multi-channel stimulation pulse coordination

delivering meaningful stimuli; interpreting neural code

- variability
 - across users
 - may be enhanced by impairment
 - across time
 - circadian rhythms
 - potentiation, habituation
 - adaptation, fatigue
 - across tissues
 - neural
 - target organ

- human factors
 - personal capabilities
 - affected by age, impairment, tolerance for technology
 - ease of use
 - need for training
 - personal needs (self-dosing)
 - at home, at work, ...
 - comfort
 - personal preferences
 - activities, style, ...

Hardware Programming/ User Fitting / Data Management

Hardware/Firmware

- Create new Stim programs
- View/Modify Programs

User Fitting

- Calibrate electrodes
- Determine stimulation parameters
- Set channel modality

Experimental/Test Panels

- Determine Maps
- Conduct Studies
- Annotate and Store Data

Closing the Loop

safely and effectively address user needs

Important trends for closing the loop:

- neurotechnology to provide targeted neural sensing and activation
- neurotechnology with adaptive capabilities
- neurotechnology that is increasingly integrated with biological systems
- neurotechnology for personalized precision treatment

1st order challenges:

• placing the neural interface at the appropriate location and keeping it there

2nd order challenges:

• delivering meaningful stimuli, interpreting neural codes

3rd order challenges:

• variability and human factors

