Stimulating Peripheral Activity to Relieve Conditions (SPARC)

Informational Webinar for RFA-RM-16-008

Data Coordination, Map Synthesis, and Simulation Cores for the SPARC Program

March 29, 2017
Features of NIH Common Fund Programs

- Address important **challenges/obstacles** in biomedical research, and/or capitalize on **emerging scientific opportunities** where strategic investment can have an impact.

- Are **catalytic**: Programs must achieve a defined set of high impact goals within 5-10 years.

- Are **goal-driven**, with progress measured against concrete **milestones**.

- Promote the missions of **multiple NIH Institutes and Centers (ICs)**.

- Can require a high level of **coordination**.

Each Common Fund program addresses unique scientific needs and opportunities, and so each program has a unique implementation plan driven by the science.
NIH Common Fund Programs

New Types of Clinical Partnerships
- Undiagnosed Diseases Network
- Regulatory Science
- Global Health
- HCS Research Collaboratory
- Molecular Transducers of Physical Activity in Humans

Transformative Workforce Support
- Pioneer Awards
- New Innovator Awards
- Transformative Research Awards
- Early Independence Awards
- Enhancing the Diversity of the NIH-Funded Workforce
- Strengthening the Biomedical Research Workforce

Data/Tools/Methods
- Big Data to Knowledge (BD2K)
- Gabriella Miller Kids First
- Metabolomics
- Protein Capture
- Library of Integrated Network-Based Cellular Signatures (LINCS)
- Genotype-Tissue Expression
- NIH Center for Regenerative Medicine
- Single Cell Analysis
- Knockout Mouse Phenotyping
- Stimulating Peripheral Activity to Relieve Conditions (SPARC)
- Epigenomics
- Human Microbiome
- Extracellular RNA Communication
- 4D Nucleome

New Paradigms
- Glycoscience
- Global Health
- Big Data to Knowledge (BD2K)
- Science of Behavior Change
- Single Cell Analysis
- Knockout Mouse Phenotyping
- Epigenomics
- Human Microbiome
- Extracellular RNA Communication
- 4D Nucleome
Recent FDA Market Approvals

- **Inspire**
- **EnteroMedics - Maestro**
- **Medtronic - InterStim**
- **BioControls - CardioFit**
- **MetaCure - Diamond**
- **Boston Scientific - Vessix**
Many randomized controlled trials miss their prespecified primary efficacy endpoints

Boston Scientific NECTAR Trial (Vagal Nerve Stimulation, Heart Failure)
BioControls INOVATE Trial (Vagal Nerve Stimulation, Heart Failure)
Medtronic SYMPLICITY (Renal Denervation, Hypertension)
CVRx® Rheos (Baroreflex Activation Therapy)
Apnex (Hypoglossal Nerve Stimulation, Sleep Apnea)
St. Jude BROADEN Trial (DBS Area 25, Depression)
Medtronic RECLAIM Trial (DBS Ventral Capsule/Ventral Striatum, Depression)
Medtronic SANTE Trial (DBS ANT, Epilepsy)

Common Themes:
- followed successful open label studies
- large sham arm effect
- remarkable response in some patients
Autonomic Nervous System

Sympathetic: thoraco-lumbar outflows

Parasympathetic: cranial and sacral outflows

1. Symp to b.v. & skin
2. Symp to b.v. & skin
3. Symp to b.v. & skin
4. Symp to b.v. & skin
5. Symp to b.v. & skin
6. Symp to b.v. & skin
7. Symp to b.v. & skin
8. Symp to b.v. & skin
9. Symp to b.v. & skin
10. Symp to b.v. & skin
11. Symp to b.v. & skin
12. Symp to b.v. & skin
13. Symp to b.v. & skin
14. Symp to b.v. & skin
15. Symp to b.v. & skin
16. Symp to b.v. & skin
17. Symp to b.v. & skin
18. Symp to b.v. & skin
19. Symp to b.v. & skin
20. Symp to b.v. & skin

Enteric: neurons in the gut wall

IFN

Furness 2006
Opportunity: Neuromodulation of organ function holds promise in treating many diseases.

Challenge: The mechanisms of action for neuromodulation therapies remain poorly understood.

Program Goals: Provide a scientific foundation that enables better understanding of the neural control of organ function, spurring development of the next-generation of therapeutic closed-loop neuromodulation devices.

~$238 million investment over 7 years
SPARC Components

SPARC1 Anatomical and Functional Mapping of the Innervation of Major Internal Organs
- Anatomical and functional neural circuit maps for multiple major organs
- Novel electrode designs, surgical procedures, and stimulation protocols

SPARC2 Next Generation Tools and Technologies
- Novel and adapted technologies to define PNS control of organ function
- Next generation neuromodulation therapies

SPARC3 Use of Existing Market-Approved Technology for New Market Indications
- New indications for existing, approved devices
- New therapeutic opportunities and methodologies

SPARC4 Data Resource Center (Data Coordination, Mapping, and Modeling)
- Public data resource containing SPARC data
- Integrated, predictive, anatomical, and functional neural circuit maps
SPARC Program Manager and Staff set overall vision and make adjustments.
Other Transactions

https://commonfund.nih.gov/sparc/OtherTransactions

Unique funding mechanism that is neither a grant, cooperative agreement, nor a contract

Funding Announcement
- Publication on the SPARC website and/or Grants.gov
- Encourages nontraditional partners

Review
- Interactive discussion with Program staff
- New reviewer voices
- Selection of pieces of a proposal
- Reviewer input considered by the SPARC Program Manager in award selection

Award Management
- Awarded activity can be:
 - Expanded
 - Modified
 - Partnered
 - Not supported
 - Discontinued

Based on:
- Program needs
- Emerging methods
- Technologies or approaches
- Availability of funds
SPARC Timeline

- **2015**
 - New Tools (exploratory)

- **2016**
 - Build public-private partnerships

- **2017**
 - Maps 1.0
 - New tools (specific, need-driven)

- **2018**
 - Leverage public-private partnerships for human functional mapping

- **2019**
 - “Next gen sharing”

- **2020**
 - Maps 2.0

- **2021**
 - 38
SPARC Snapshot, March 2017

Mapping

- **Comprehensive (Shivkumar/UCLA)**
 - Auricular branch of vagus (Napadow/MGH)
 - Superior Cervical Ganglion (Lewis/Case Western)

- **Comprehensive (Bolser/U FL)**
 - Pulmonary neuroepithelial cells (Sun/UCSD)

- **Comprehensive (Powley/Purdue)**
 - Transcriptome (Southard-Smith/Vanderbilt)
 - Enteroendocrine cells (Shen/Duke)

- **Foundational maps (Keast/Melbourne)**
 - Pancreas (Campbell-Thompson/U FL)
 - Spleen (Campbell-Thompson/U FL)
 - Adipose tissue (Muenzberg-Gruening/Pennington; Zeltser/Columbia)

Translation

- **Chen (Hopkins)/Boston Sci**
 - SCS for gastric motility

- **Canning (Hopkins)/Nuviant**
 - Synapse VNS for asthma

- **Yin (Transtimulation)/CVRx**
 - VNS for diabetes

Tools

- **Cardioneural mapping**
 - Electrodes (Ardell/UCLA)
 - Intrafascicular nanowire (Durand/Case)

- **Rabbit OSA model**
 - (Strohl/CWRU)
 - (Horn/Pitt)

- **Ultrasound modulation**
 - (Okusa/UVA)

- **Implantable gastric platform**
 - (Farajidavar/NYIT)

- **Ephys/IR mapping**
 - (Howard/Toledo)

- **Mouse lines for ENS study**
 - (Howard/Toledo)

- **Conformal bladder electronics**
 - (Gereau/WashU)

- **Bladder monitoring**
 - (Damaser/Cleveland Clinic)

- **Viral tools**
 - (Vulchanova/UMN)

Data

- TBD TBD TBD TBD – APPLY!
Shivkumar group, UCLA

Ardell et al 2016 / Physiol
SPARC2 – Miniature Multiphoton Microscope
Weir – U Colorado

Cells in volume: > 200

Preliminary device

http://dx.doi.org/10.1364/OL.40.002553

Collaboration with Prof. Diego Restrepo, Department of Cell and Developmental Biology, Director Center of Neuroscience
SPARC4 – Funding Opportunity

SPARC Data and Resource Center: Data Coordination, Map Synthesis, and Simulation Cores

• RFA-RM-16-008 (OT3)

• **Letter of intent (LOI) is required** and is due by April 7, 2017

• LOIs will be reviewed for programmatic relevance by April 21, 2017. A subset of applicants will be **invited** to submit a written application (due June 2, 2017).

• A subset of applicants who submit a written application will be **invited** to present their applications to an interactive review panel (July 21, 2017), after which awardees will be selected.
• Serve as SPARC’s **central sharing hub**, continuing to exist beyond the end of the SPARC program as a critical resource for neuromodulation target development.

• Host an **interactive atlas** of human and selected animal peripheral nervous systems.

• Allow users to design and place nerve stimuli and observe predictions of their effects at multiple organs, while accounting for user-defined anatomical and physiological parameters.

• Offer a readout of which input uncertainties drive the output uncertainty, providing guidance for where repeated measurements and new experiments are needed.
The SPARC DRC will serve as a hub for the research, engineering, and clinical communities, disseminating knowledge and tools to advance neuromodulation of target organs.

The DRC is composed of three Cores:

- **Data Coordination Core**: Store, organize, manage, and track access to data and resources generated by SPARC.

- **Map Synthesis Core**: Build interactive, modular, continually updated visualizations of nerve-organ anatomy and function.

- **Modeling and Simulation Core**: Develop an online framework capable of hosting and connecting simulations to create predictive, multiscale, multiphysics models spanning from modulation sources acting at feasible access points to organ functional responses.
Data Coordination Core (DAT-CORE)

Store, organize, manage, and track access to data and resources generated by SPARC.

• Sample objectives (*see funding announcement for full list*)
 • Store and facilitate access to anatomical and physiological data sets, metadata, protocols, simulation tools, etc.
 • Develop a web portal front-end that provides clear and easy management and retrieval of data and tools from SPARC.
 • Define data standards and implement a process to validate submitted data prior to release.

• Applicants should have experience with coordination of large, multi-dimensional, multi-modality data sets; a cloud-first mentality; and openness regarding new models of data management.
Map Synthesis Core (MAP-CORE)

Build interactive, modular, continually updated visualizations of nerve-organ anatomy and function.

- Sample objectives (*see funding announcement for full list*)
 - Develop detailed, functional, and anatomical neural circuit maps of the autonomic and sensory innervation of multiple organs.
 - Produce interactive, multilayered visualizations that span organizational levels from gross organ anatomy to circuit anatomy to cell physiology to gene expression, as appropriate.
- Applicants should have experience in analysis and 3D/4D visualization of heterogeneous data sets, as well as experience developing or adapting ontology and provenance tools.
Modeling and Simulation Core (SIM-CORE)

Develop an online framework capable of hosting and connecting simulations to create predictive, multiscale, multiphysics models spanning from modulation sources acting at feasible access points to organ functional responses.

• Sample objectives (see funding announcement for full list)
 • Develop a technical framework to host and connect simulations developed by other SPARC teams.
 • Users should be able to run composite models by specifying a neuromodulation pattern and receiving a predicted organ readout, or by specifying a desired organ readout and intervention point and receiving a neuromodulation pattern.

• Applicants should not propose to develop models for individual organs.
Cross-Cutting Responsibilities

All three Cores must:

Coordinate with the other DRC Cores, components 1-3 of the SPARC program, other SPARC Consortium members, and SPARC program partners and collaborators

Support SPARC program data upload and release, as governed by consortia agreements pertaining to sharing and confidentiality and the SPARC Material Sharing Policy

Interact closely with informatics and data science experts from other SPARC-funded teams

Upon completion or termination of the funded work, make all study materials, data, and procedures available to SPARC program staff and to the public
Data and Resource Sharing

Before applying, read the Material Sharing Policy

https://go.usa.gov/xX8Hh

Funded projects will be required to make SPARC-developed data and technologies available to other projects in the SPARC Consortium, and more broadly to the research community.
Application Process

Discuss
• Optional, but encouraged discussion with SPARC program staff.

LOI
• Email letter of intent by April 7, 2017
• Must propose to address at least one of the three DRC Cores

Invitation to Submit
• Within two weeks, a subset of LOI applicants will be invited to submit a full OT3 application

OT3 App
• Full OT3 applications are due by June 2, 2017
• These applications are invite-only

Invitation to Present
• Within four weeks, a subset of OT3 applicants will be invited to present their applications to an interactive review panel

Present
• By July 21, 2017, at least one member from each invited team will give a presentation in Bethesda, MD

Negotiate
• SPARC will negotiate budget, benchmarks, and deliverables with selected applicants

Award
• NIH will award an Other Transaction Award (OT3) after successful negotiation
OT3 Letter of Intent

The LOI is **required** but is not binding

Number and title of funding opportunity

Descriptive title of proposed activity

Core(s) for which application is intended

For each Core:

- Contact information for project lead and affiliation of all key personnel
- Description of **relevant expertise** for key personnel (up to 100 words per person)
- Description of **planned activity** to address the Core objectives (up to 800 words)
- Description of **resources available** to accomplish the activity (up to 500 words)
- If intent is to apply for more than one Core, a description of how the Cores will interact (up to 500 words)

Email to **SPARC_Data@mail.nih.gov** by April 7, 2017
This is not a typical NIH grant application

Cover page (up to 1 page)

Summary vision statement (up to 500 words)

Detailed activity plan (up to 4000 words and 2 figures per Core)
 • Applicants encouraged to provide links to videos, demos, and simulations

Letter of institutional support

Letters of support from SPARC Consortium members (optional)

Bibliography (up to 1 page)

Major tasks and milestones (up to 1 page per Core)

Budget (custom format provided in the FOA; not using SF424)

Budget justification
Other Considerations

Budget

– The SPARC DRC budget is currently planned for $10 million over a 5-year period; however, Common Fund procedures and OT mechanisms allow for significant flexibilities to make adjustments that may be needed to pursue catalytic and transformative initiatives.
– Award levels and total budget may increase or decrease over time based on programmatic needs, funding availability and awardee performance.

Period of performance

– Project duration is anticipated to be 5 years
Evaluation

SPARC uses objective review

Applications will be evaluated for the following:

• Plan for accomplishing the specific objectives of the relevant Core(s)

• Past performance and expertise of the team members and complementarity with other awardees

• Plan for addressing cross-cutting responsibilities
Advice

Read the funding opportunity
Read the funding opportunity
Read the funding opportunity

Clear tasks and milestones
Be specific
Don’t distort reality
Don’t waste pages
Don’t be late
Justify
ASK!

Talk to NIH staff before applying

• Use proper channels
• Visit http://nihsparc.setmore.com to sign up for virtual office hours
• We strongly encourage applicants to discuss concepts with the SPARC team
• We will provide feedback on program fit and suggestions on your concepts

aspiringmormonwomen.org/get-involved/
SPARC Contacts and Resources

Office of the NIH Director Team

Dr. Gene Civillico – Program Manager
[Email](gene.civillico@nih.gov) (301) 351-4180

Dr. Felicia Qashu – Program Officer, OT Project Manager
[Email](felicia.qashu@nih.gov) (301) 451-7222

Ms. Kristina Faulk – Communications Lead, OT Policy Analyst
[Email](kfaulk@mail.nih.gov) (301) 402-9185

Project Team Leaders

Biology

- Dr. David Saslowsky:
 [Email](SPARC_Biology@mail.nih.gov) (301) 594-8876
- Dr. Patricia Greenwel:
 [Email](SPARC_Biology@mail.nih.gov) (301) 435-1169

Technology

- Dr. Mike Wolfson:
 [Email](SPARC_NextGen-Tools@mail.nih.gov) (301) 451-4778
- Dr. Andrew Weitz:
 [Email](SPARC_NextGen-Tools@mail.nih.gov) (301) 451-4778

Translation

- Dr. Danilo Tagle:
 [Email](SPARC_New-Market@mail.nih.gov) (301) 594-8064
- Dr. Siavash Vaziri:
 [Email](SPARC_New-Market@mail.nih.gov) (301) 594-8921

Data

- Dr. Vinay Pai:
 [Email](SPARC_Data@mail.nih.gov) (301) 451-4781
- Dr. Andrew Weitz:
 [Email](SPARC_Data@mail.nih.gov) (301) 451-4778

SPARC4 Questions:

[Email](SPARC_Data@mail.nih.gov)

Virtual Office Hours:

[Website](http://nihsparc.setmore.com)