KOMP²: the BaSH consortium

Monica Justice and Rich Paylor
Baylor College of Medicine
Houston, TX

BaSH: experience translates into throughput

BaSH: Mouse Production linked with Phenotyping for KOMP²

Scientific Leadership and impact

- BaSH is comprised of THREE leading institutions
- ES cell and gene targeting technology has a strong foundation at Baylor
 - Unparalleled mouse infrastructure
 - Embedded within a medical school
 - Clinical and translational applications
- Sanger has brought genomics to mouse genetics
- Harwell has > 60 year history of mouse genetics
- KOMP and EUCOMM mice now constitute majority [80%] of alleles distributed

Coordination/Cooperation

PI Committee

U42
Monica Justice
Bill Skarnes
Steve Brown

U54
Monica Justice
Richard Paylor
Allan Bradley
Steve Brown

Advisory Board

BCM Financial Management

Operations Committee

U42

Bill Skarnes

Franco DeMayo

Tom Weaver

Allan Bradley, Austin Cooney, Cindy Buckmaster Ramiro Ramirez-Solis, Sarah Wells, Martin Fray, Ann-Marie Mallon, Bin Liu U54

Richard Paylor

Allan Bradley

Tom Weaver

Steve Brown, Corey Reynolds, Ramiro Ramirez-Solis Jacqui White, Mary Dickinson Ann-Marie Mallon, Bin Liu

Sanger Institute: A record of production

- Allan Bradley, Bill Skarnes, Ramiro Ramirez-Solis
- Major player in KOMP¹
 - 5,000 conditional alleles + targeting vectors
- Major player in EUCOMM
 - 5,346 alleles to date, towards a total of 8,500
- MirKO, microRNA resource
- Vector production > 12,800 vectors
- 400+ mouse lines

Sanger Institute: ES cell resources

- KOMP and EU resource centers are a risk factor for KOMP²
- Distribution centers overwhelmed by demand
 - Backlog can affect throughput
- Sanger holds original archival copies of:
 - Majority of clones produced: CSD, EUCOMM, MirKO
 - All conditional targeting vectors and intermediates
 - All data supporting vector and allele construction
- Sanger will implement stringent allele QC

Sanger Institute: Technology developer

- High throughput recombineering
- Computational allele design
- JM8 and JM8 Agouti cell lines
- Anitrack internal mouse tracking data base and electronic "health record" of more than 400,000 mouse citizens
- C57BL/6N Cre and Flp deletor lines
- IT
 - KERMITS, iMITS

MRC Harwell: National Centre of Excellence in Mouse Genetics from 1950

MRC Mission

Improve human health through world-class medical research

International Renown in Mammalian Genetics

- Impact of Radiation on Genomes
- X Chromosome Inactivation & Imprinting
- Frozen Embryo Bank
- Mouse Models of Disease
- Systematic Mutagenesis & Phenotyping

Mammalian Genetics Unit (MGU)

- Genetics and functional genomics research into a wide variety of disease models
- 10 Research Programs
- Steve Brown, Director

Mary Lyon Centre

- National Infrastructure for Mouse Genetics
- Vivarium; 4,000 m2; 14,000 IVC Cages, max capacity 52,000 mice
- National Biorepository & Distribution Centre
- Tom Weaver, Director

MRC-MLC Harwell

Scientific Leadership
 Provide Expertise
 Influence National Funding Programs

- 2. Operational Engine Infrastructure to Deliver Capability and Quality
- 3. Resource Portal To Mouse Community
 Open Access to Mice, Data, Analysis Tools

European Mouse Programmes

Developing mouse mutants for most of the genes in the mouse genome

- **EUMORPHIA European Mouse Phenotyping**
 - Development and standardisation of mouse phenotyping platforms

- EUMODIC European Mouse Disease Clinic
 - Undertake a major pilot programme to utilise standardised phenotyping platforms for the analysis of mutants from EUCOMM

- EMMA European Mouse Mutant Archive
 - Archiving and dissemination of mice
- InfraFrontier European Infrastructure Network
 - Preparing European Infrastructure for phenotyping and archiving

Baylor College of Medicine

- Monica Justice, Franco DeMayo, Richard Paylor
- Top medical school
- Genetics department ranked in top 10
- Unparalleled mouse facilities
 - Operated by Center for Comparative Medicine
 - 115,000 cages, 4.4 acres
 - New TMFT facility free of all pathogens
 - Helicobacter and MNV
 - Techniplast Green line ventilated cages
 - Techniplast robotic cage washers
- IT Infrastructure, Mouse ES cell and GEM Cores, Mouse Phenotyping and Behavior Cores

History of collaborative interactions

- Numerous EU projects
 - EMMA, EUCOMM, EUMODIC, EUCOMMTools
- KOMP CSD [CHORI-Sanger-UC Davis]
- Strong interaction among Pls
 - Baylor/Sanger : Justice-Bradley
 - Sanger/Harwell : Brown-Weaver-Bradley-Skarnes
 - Harwell/Baylor : Brown-Justice
- KOMP² preparation

Benefits of **BaSH** consortium

- International cooperation and coordination
 - Ongoing, proven to work in EUMODIC
 - Required for success of IMPC
 - Paradigm for global science initiatives
- Multi-member composition
 - Elasticity
 - One member can increase capacity
 - Reduced risk
 - Cross-referencing strain values for QC
- Technology transfer
 - Genotyping platform
 - IT developments
 - Phenotyping assays
 - Encourages innovation

Work Distribution

Year	1	2	3	4	5	Total
BaSH- Production	130	180	185	200	130	825
Phenotyping	90	130	200	220	185	825
BCM- Production	50	80	85	100	130	445
Phenotyping	30	50	100	120	145	445
Sanger- Production	40	50	50	50	0	190
Phenotyping	30	40	50	50	20	190
		_			_	
Harwell- Production	40	50	50	50	0	190
Phenotyping	30	40	50	50	20	190

Consortium will allow ramp up BCM will produce over ½ of mutant lines Role of consortium will end by year 5 Preparation for next phase

Knockout First allele

Homozygous or heterozygous
 Cohorts/littermates to phenotyping

BaSH Consortium: Broad Based Phenotyping

Overall Goals:

- Assess gene function in multiple systems
- Communicate observations and interpretations
- Develop technologies and platforms

Domains

Nervous system Sensory

Cardiac Respiratory

Integumentary Skeletal

Metabolism Immune & Blood

Assay selection

moderate/high-throughput

reliable & reproducible

opportunities for 'challenge' assessments

transferable technology

'Easy' statistical analysis

Pipeline Development & Implementation

Expertise

BaSH consortium better than sum of parts Leaders in field are part of BaSH Training: transferring protocols

Capacity

throughput, housing, etc

Assay sensitivity and variability

Behavior well known for challenge

Control inclusion

B6N not sufficient, need WT littermates

<u>Analysis</u>

Easily imported, and simplest 'stats' possible

Key:

BCM Mouse Behavioral Testing Rich Paylor, Director

TMF (transgenic mouse facility)

13 testing rooms

30-35 different assays available

12 laboratories - 35 investigators

8000 hrs of use

* (most of the users have moved to NRI)
Perfect timing to access state-of-the-art facility

BCM Mouse Phenotyping Core

- 3400 sq.ft state-of-the art Phenotyping facility
- 2 Full time staff members
- Corey Reynolds, Director- 8 years experience

Mouse Phenotyping Core

- Vevo 770 Ultrasounds
- Bruker 7.0T MRI (body and head imaging)
- Gamma Medica CT/SPECT
- Kodak X-Ray/Fluorescence Imager
- Piximus Bone Densitometer
- Oxymax Indirect Calorimetry (chambers/treadmill)
- Unrestrained Whole Body Plethysmography
- Metabolic Cages
- DSI Blood Pressure and ECG telemetry
- Non-Invasive Blood Pressure
- ECGenie
- Treadmills
- Mini Mitter running wheel
- Slit lamp microscope
- Full Surgical suite with several procedures

BCM CCM Pathology Laboratory

- Roger Price, DVM, Director
- Cobas Mira Chemical chemistry analyzer
- Advia Veterinary Hematology analyzer
- Training platform for Veterinary Pathology
- Necropsies/pathology

Under Development: Cardiac Challenge

Isoproterenol or Dobutamine

- Mimics the effects of exercise (treadmill stress test in humans)
- Stimulates β-adrenergeic receptors →Increase in HR in a healthy animal
- Baseline echo →IP injection of the drug →Post-Injection echo (data points taken every minute for 5 minutes)
- Duration (6-8 min/mouse)

Under Development: Respiratory Screen

- Challenge: Methacholine or Ozone
 - assesses airway hyper-responsiveness
- Control Group → Aerosolized isotonic saline
 Experimental Group → Aerosolized Methacholine
 (mg/ml) of increasing concentrations (4)
- Baseline Collection →Administer drug for 2 min →5
 min data collection →10 min rest period →repeat
- Duration (1hr 30min/group of 8 mice)

Technology Development Imaging

Studying embryonic development

Live embryonic imaging is critically important

Confocal microscopy of vital fluorescent markers is a powerful tool

- Barriers: skin/fur, uterine wall

ε-globin-GFP

Flk1-H2B::EYFP

Flk1-myr::mCherry

Mary Dickinson Irina Larina Baylor College of Medicine Kirill Larin
University of Houston

Optical Coherence Tomography

Images produced by backscatter from an interferometer Uses light instead of sound

Image depth = 2 - 3 mm Confocal and 2-photon = 300 - 500 um

High resolution
2 - 5 um
"Image pathology"

Swept-Source OCT system

scanning rate - 16 kHz central wavelength - 1325 nm spectral width – 100 nm output power - 12 mW

Using OCT to image the adult eye

Human:
D190N mutation in
RHO causes retinitis
pigmentosa: imaged
using OCT

Mouse: D190N mutation in B6 imaged using OCT

Live OCT imaging of mouse embryos

In utero embryonic imaging

1. Live embryo imaging in sacrificed females (terminal surgeries)

- Pregnant CD-1 females were sacrificed at 12.5 to 18.5 dpc.
- The animal remains on heating pad during the procedure to keep the embryos alive.
- Abdominal wall was cut to expose the uterus and covered with clear plastic wrap to prevent dehydration.
- Live OCT imaging was performed through the uterine wall.

2. Following development in the same embryos (survival surgeries)

- Pregnant females were anesthetized with isoflurane and kept on the heating pad during the whole procedure.
- The uterine horn was exposed for imaging through an abdominal incision.
- After imaging, the incision was stitched back.
- The procedure was repeated after 48 and 96 hours. The animal was sacrificed after the third imaging session.

Imaging embryo morphology at different stages of development

- 1-head
- 2-forelimb
- 3-hindlimb
- 4-pinna of ear

- 5-eye
- 6-yolk sac
- 7-uterine wall
- 8-follicles of vibrissae

Imaging of embryonic limb development

1-cartilage primordium of distal phalangeal bone

2-cartilage primordium of phalangeal bone

3-cartilage primordium of metacarpal bones

4-follicles of vibrissae

In utero embryonic imaging

1. Live embryo imaging in sacrificed females (terminal surgeries)

- Pregnant CD-1 females were sacrificed at 12.5 to 18.5 dpc.
- The animal remains on heating pad during the procedure to keep the embryos alive.
- Abdominal wall was cut to expose the uterus and covered with clear plastic wrap to prevent dehydration.
- Live OCT imaging was performed through the uterine wall.

2. Image development in the same embryos (survival surgeries)

- Pregnant females were anesthetized with isoflurane and kept on the heating pad during the whole procedure.
- The uterine horn was exposed for imaging through an abdominal incision.
- After imaging, the incision was stitched back.
- The procedure was repeated after 48 and 96 hours. The animal was sacrificed after the third imaging session.

Longitudinal studies

New Technology Evaluation High-Resolution Episcopic Microscopy (HREM)

- Shoumo Bhattacharya (Ox), Tim Mohun (NIMR)
- Automated setup
 - ☐ Resin embedded samples
 - ☐ Fluorescent dyes (acridine + eosin) stain tissue & provide fluorescent background
 - E8.5 17.5
 - ☐ Section every 2u
 - Block face serially imaged
 - ☐ 24 hours per sample
- Allows resolution to 2 u / voxel
- Can be done after MRI imaging

Weninger et al Nat Genetics 2001; Pieles et al J Anat 2007

HREM Allows visualisation of coronary vasculature, myocardial anatomy

3D Rendering & Analysis

High Throughput Phenotyping Using MRI

Shoumo Bhattacharya, Jurgen Schneider

- Magnetic resonance imaging
 - 32 embryos at E15.5 embedded in agarose
 - Imaged overnight on 11.7 T system

Providing for the local, national, and international scientific community

Thank You

The **BaSH** Consortium

BCM: Monica Justice, Rich Paylor, Franco DeMayo, John Sharp, Corey Reynolds

Sanger: Allan Bradley, Bill Skarnes, Ramiro Ramirez-Solis

Harwell: Steve Brown, Tom Weaver

And our collaborators

Mary Dickinson, Kirill Larin, Shuomo Battychara, Tim Mohun, Stephen Wang