

The Human BioMolecular Atlas Project "HuBMAP"

Robert Carter, MD, NIAMS on behalf of the trans-NIH HuBMAP WG

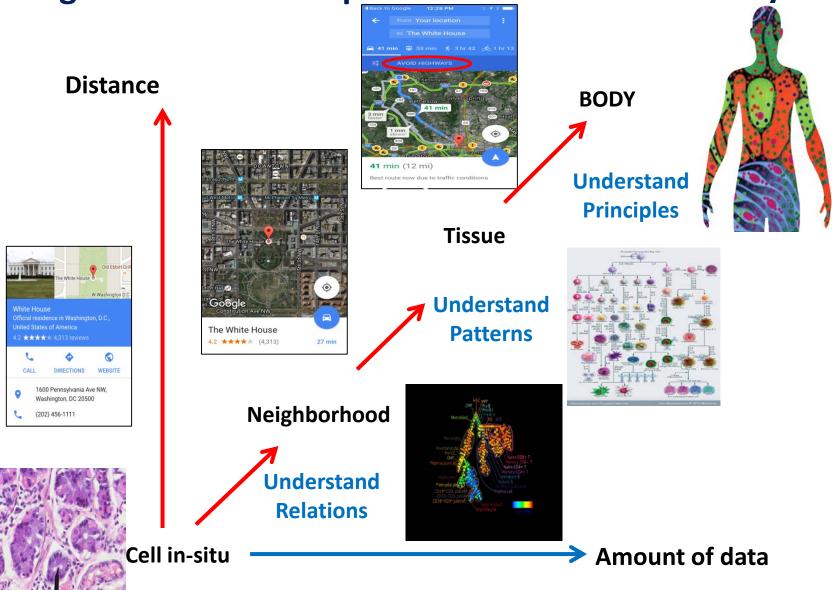
HuBMAP NIH Working Group

Common Fund Program
 Lead: Ananda Roy, Ph.D.
 Office of Strategic
 Coordination (OSC)

Members representing:

- Center for Scientific Review
 (CSR)- David Balasundaram,
 Ph.D
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) -Reiko Toyama, Ph.D.
- National Cancer Institute (NCI) - Jennifer Couch, Ph.D., J. Randy Knowlton, Ph.D., Jerry Li, Ph.D.
- National Heart, Lung, and Blood Institute (NHLBI) -Zorina Galis, Ph.D., Pothur Srinivas, Ph.D., Sara Lin, Ph.D.

- National Institute of Aging
 (NIA) Jose Velazquez, Ph.D. .
- National Institute of Allergy and Infectious Diseases (NIAID) - Elizabeth Church, Ph.D., Katarzyna Bourcier, Ph.D.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) -Robert Carter, M.D.
- National Institute of Biomedical Imaging and Bioengineering (NIBIB) -Richard Conroy, Ph.D.
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) -Deborah K. Hoshizaki, Ph.D., Krystyna Rys-Sikora, Ph.D
- National Institute of General Medical Sciences (NIGMS) -Sarah Dunsmore, Ph.D.,


Joseph G. Gindhart, Ph.D

- National Human Genome
 Research Institute (NHGRI) Ajay Pillai, Ph.D., Jeff Schloss,
 Ph.D.
- National Institute of Mental Health (NIMH) -

Andrea Beckel-Mitchener, Ph.D., Yong Yao, Ph.D.

- National Institute of Neurological Disorders and Stroke (NINDS) - Francesca Bosetti, Ph.D.
- Office of Strategic
 Coordination (OSC) Jessica
 Smith, Ph.D., Tony Casco

Aspiration: Building from Single Cells to Context to Organizational Principles Across the Human Body

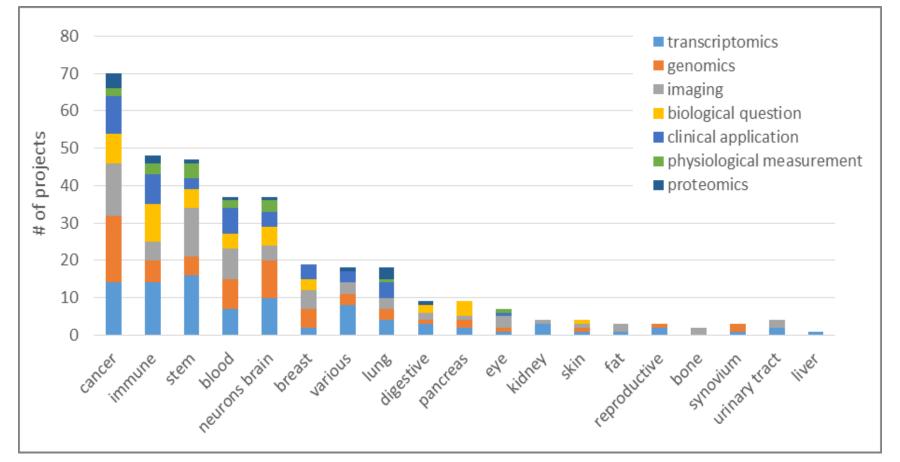
Identifying Key Areas in a Human BioMolecular Atlas (HuBMAP) WS, June 15, 2016

Reality check..

BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES

THE HUMAN PROTEIN ATLAS 🅶

CellFinder


Request for Information (RFI): Characterizing and Understanding the Organization of Individual Cells within Human Tissues

Publed.gov

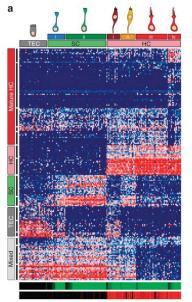
PROPOSAL

Notice Number: NOT-RM-16-025

Current Landscape of NIH-Funded Research

Cell or Tissue Type and Project Focus or Technology

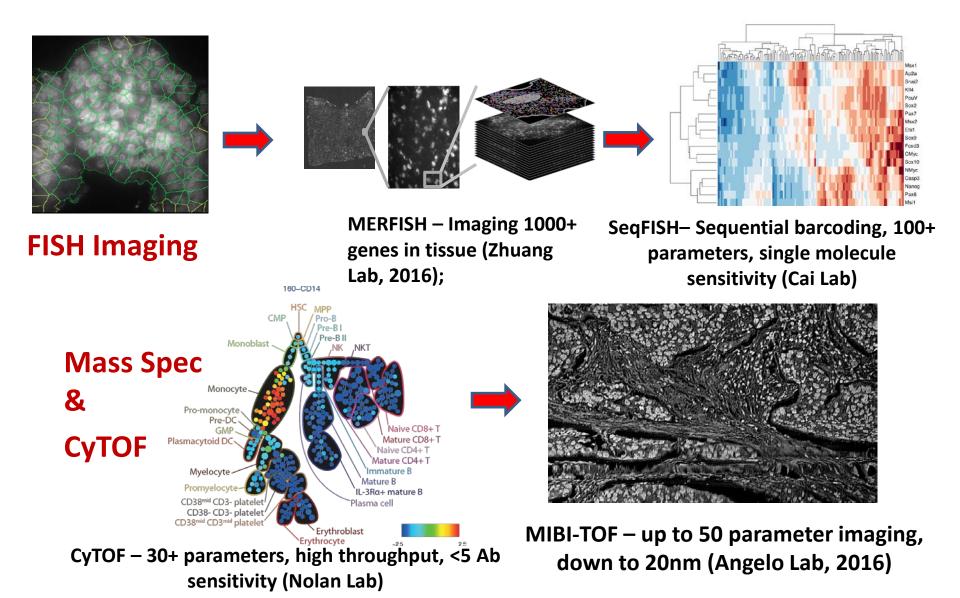
NIH Query, View, and Report (QVR), June 28th, 2016 169 projects, 17 IC's. Total investment of \$97M.


Why the HuBMAP?

	HuBMAP	GTEx	GUDMAP	LungMAP	BRAIN	SGMAP	HPA
Primary Species	Human	Human	Mouse moving to Human	Human / Mouse	Mouse	Mouse	Human
Tissues	Phase 1: ~10 Phase 2: ~40	~53	Kidney / Prostate	Lung	Brain	Salivary glands	~44
Focus	Inter- individual variability	eQTLs	Early development	Early development	Cell census	Early development	Proteome
Tech	FISH, RNA- Seq, IMS	RNA-Seq	FISH, RNA- Seq	FISH, RNA- Seq, MS, CT	RNA-Seq	Microarray / RNA-Seq	60,000+ Antibody
Single cell focus?	Yes	No	Yes	Yes	Yes	No	Moving towards
Spatial?	Yes	No	Yes	Yes	No	No	Yes
Across Body?	Yes	Yes	Νο	No	No	Νο	Yes


Opportunities

Single Cell Technologies



RNA-Seq identifies unique cell types in mouse utricle (Kelley Lab)

Retina Drop-Seq (48,808 cells) – 3 new cell types identified (Regev Lab)

Emerging In-situ Technologies

Proposed Goals for the HuBMAP

To understand:

- 1) The principles behind the organization of cells in human tissues across the body
- 2) The role of this organization in orchestrating short and long-range communication between individual cells

Will lead to better understanding:

 The role played by specific individual variations and changes across the lifespan and health/disease continuum

Outputs of the HuBMAP

Phase 1:

- 1. A standardized pipeline to create multiscale multidimensional molecular maps
- 2. Next generation tools (high-resolution, high-content and high-throughput) to map tissue organization
- 3. Census of major cell types in multiple tissues to understand interindividual variability
- Characterization and mapping of the 3D biomolecular architecture of all cells in ~10 human tissues / systems
- 5. Understanding of "normal" inter-individual variation

Phase 2:

- 1. Extension of cell census and mapping projects to lifespan and health / disease continuum
- 2. Validated models of organizational / functional relationships in tissue
- 3. Next generation tools to explore tissue dynamics (4D)

Initiatives

Phase 1 & 2

- **1. Tissue Core:** Human tissue from multiple donors (>20) and multiple sites (>20) to 1) study inter-individual variability, 2) changes in development & disease
- 2. Cell Census and Deep Profiling: High-throughput single cell RNA-seq and FISH imaging, chemistry, validation and benchmarking. Accelerate the development, validation and dissemination of in situ analysis. Mapping the organizational and functional relationship between tissue-specific cells of each organ and immune cells, progenitor cells, endothelial/vascular cells, and the stroma.
- **3.** Data Coordination and Organizational Hub: Track, store, and display all data generated by the HuBMAP and assist with development of ontologies, metrics, standards and analytical tools. Integrate with complementary programs to make data interoperable. Promote cross-site interactions, managing working groups and committees of the consortium (e.g. the Steering Committee), the website, meetings and outreach

Phase 2 Only

- **1. Visualizing and Modeling:** Build statistical and analytic techniques and models of cellular organization and communication in tissues. Compare signatures of tissues from healthy individuals to those with different diseases
- 2. **Tissue Dynamic Mapping:** Accelerate the development of technologies and systematic approaches for mapping spatio-temporal changes within human tissues

Next steps

- Refine boundaries based on continued community input
- Decide which components will be prioritized by peer review
- Build synergies with ongoing similar NIH and international programs
- Continue gathering best practices for management and evaluation of the HuBMAP consortium in phase I and phase II
- Develop detailed implementation plans for the HuBMAP program

Proposed HuBMAP Budget

			Phase 1	Phase 2					
Initiatives	Lead IC	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25
Initiative 1: Tissue Core	TBD	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5
Initiative 2: Census of Human Cell Types	TBD	6.0	6.0	6.0	10.0	10.0	10.0	10.0	10.0
Initiative 3: Deep Profiling of Human Tissues	TBD	6.0	6.0	6.0	10.0	10.0	10.0	10.0	10.0
Initiative 4: Technology Development for in situ Analysis	TBD	5.0	5.0	5.0	3.0	3.0	3.0	3.0	3.0
Initiative 5: Data Coordination Center	TBD	1.0	2.0	3.0	3.0	3.0	3.0	3.0	3.0
Initiative 6: Organizational Hub	TBD	1.0	1.0	1.0	1.5	1.5	1.5	1.5	1.5
Initiative 7: Visualizing and Modelling Large-Scale Cell Networks	TBD				3.0	3.0	3.0	3.0	3.0
Initiative 8: Tissue Perturbation Mapping	TBD				5.0	5.0	5.0	5.0	5.0
RMS:	TBD	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TOTAL		20.5	21.5	22.5	37.5	37.5	37.5	37.5	37.5

THANK YOU.

QUESTIONS?