We Accelerate Discovery

You are here

Printer

Overview
 

Peripheral nerves, the nerves outside of the brain and spinal cord, make connections with and influence the function of every organ in the body. Modulation of peripheral nerve signals to control the functions of the organs they supply has been recognized as a potentially powerful way to treat many diseases and conditions, such as hypertension, heart failure, gastrointestinal disorders, type II diabetes, inflammatory disorders, and more.  However, the underlying physiology and mechanisms of action for neuromodulation therapies are poorly understood.  The design of more effective and minimally invasive neuromodulation therapies requires knowing exactly what nerves one must stimulate and how they must be stimulated to achieve the desired effect on organ function. It also requires knowing exactly what nerves one must avoid to prevent unwanted side-effects.

The Common Fund’s Stimulating Peripheral Activity to Relieve Conditions (SPARC) is uniquely positioned to serve as a community resource that provides the broader public and private research communities with the scientific foundation necessary to advance neuromodulation therapies towards precise neural control of end-organ system function to treat diseases and conditions. This high-risk, goal-driven program is structured as a consortium of four distinct research areas that will function in an integrated and iterative way, fostering discovery and broad dissemination of the fundamental physiology and biological mechanisms underlying peripheral autonomic and sensory control of internal organ function and changes attributable to disease states and conditions. In turn, these discoveries will enable development of next generation closed-loop neuromodulation therapies, investigation of approved devices for new indications and adoption of improved computational tools and modeling methods. The SPARC program tentatively plans to support interdisciplinary teams of investigators to deliver neural circuit maps of several organ systems, novel electrode designs, minimally invasive surgical procedures, and stimulation protocols, driven by an end goal to develop new neuromodulation therapies.

Current plans include initiatives to:

  • Capitalize on recent technology advances and anticipated new technology developments facilitated by the program to deliver detailed, predictive, functional and anatomical neural circuit maps of the autonomic and sensory innervation of multiple internal organs or organ systems.
     
  • Leverage recent biological discoveries to develop technologies including novel electrode designs and sensors, stimulation protocols, and minimally invasive surgical procedures with an end goal to improve existing and pilot new, next generation closed-loop neuromodulation therapies.
     
  • Establish effective public-private partnerships to use existing approved neuromodulation technologies and therapies to explore new indications.
     
  • Assemble data from other SPARC initiatives into a publicly available and centralized resource for the wider research community to access as well as provide new computer modeling methods and user-friendly computational tools.
Up to Top