The NIH Common Fund Single Cell Analysis Program: An Early Outcomes Assessment

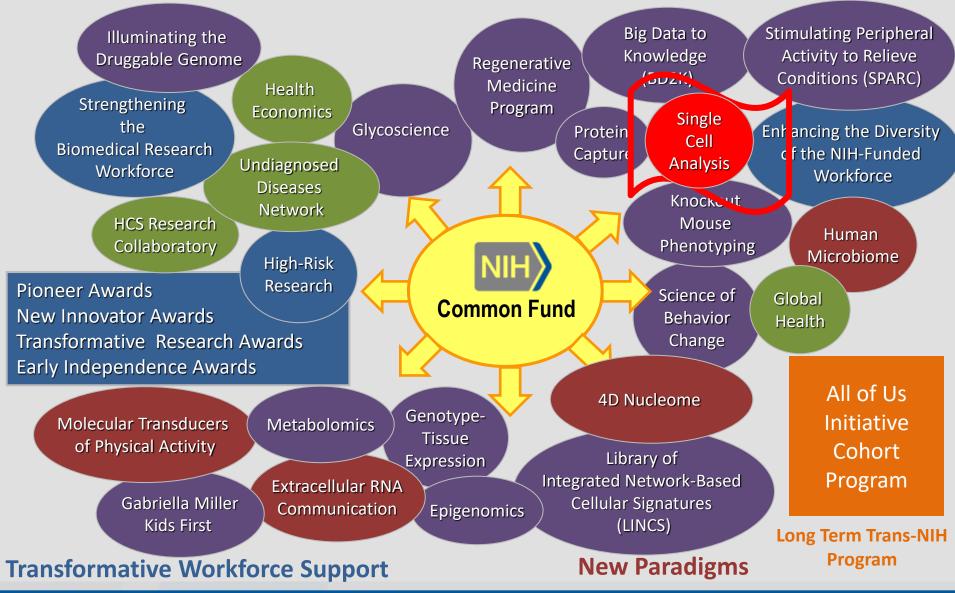
Program Evaluation Special Interest Group Meeting

December 13th, 2017

Jessica M. Smith, Ph.D. Scientific Program Analyst Office of Strategic Coordination Division of Program Coordination, Planning, and Strategic Initiatives (OD) jessica.smith6@nih.gov

What is the NIH Common Fund?

- Supports a set of trans-NIH scientific programs
- "Venture capital" space for high-risk, innovative endeavors with potential for tra extraordinary impact
- Short-term (5-10 year), goal-driven programs focused on developing specific deliverables (data, tools, technologies, etc.) to catalyze research
- Managed by the Office of Strategic Coordination within the NIH Office of the Director, in partnership with the NIH Institutes and Centers.


collaboration synergistic enable transformative goal-driven partnership challenges research cures solutions disease complex innovative opportunities creative team data knowledge resource technology catalytic deliverables

Common Fund programs are intended to benefit the entire biomedical research community

Common Fund Programs

New Types of Clinical Partnerships

Data/Tools/Methods

https://commonfund.nih.gov

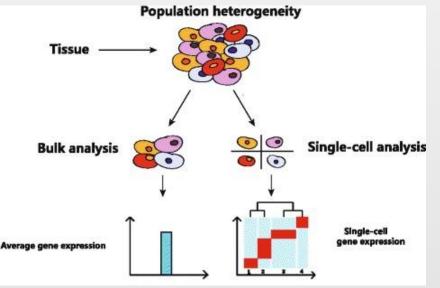
Getting to Outcomes: SCAP Closeout Assessment

Close Out Topics

State of the Science

- Evolution and attainment of program goals
- Products of research
- Significant contributions to the field of science
- Utilization of knowledge generated, research products

Management


- Effective strategies used to ensure progress
- Adequacy of type and level of support to awardees to attain goals
- Communication and coordination effectiveness

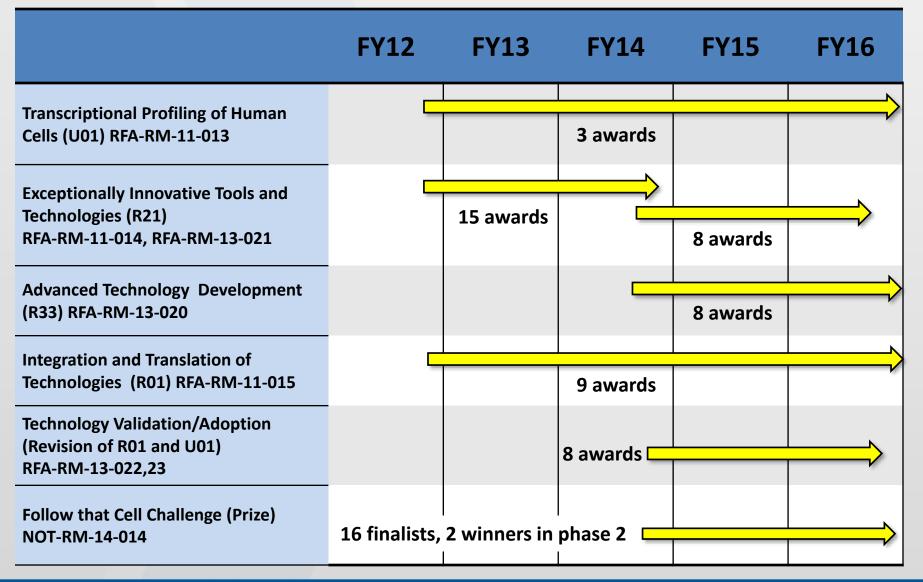
SCAP Background and Context



Why Single Cell Analysis?

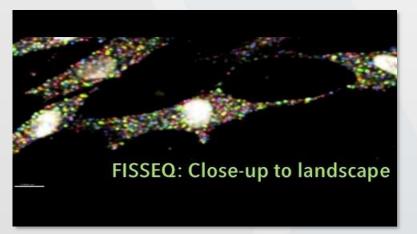
Approaches that only examine population-level characteristics can obscure crucial differences between individual cells.

Ye F, et al. J Hematol Oncol. 2017

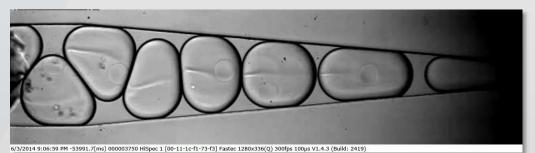


Single Cell Analysis Program (SCAP) Major Goals

Overall Goal: approaches to analyze heterogeneity of biologically relevant populations of cells *in situ*


- Address key roadblocks in analyzing single cells
- Catalyze the emerging field by building a synergistic program of unique initiatives
- Coordinate NIH efforts to improve our ability to characterize cells and understand the biological significance of heterogeneity

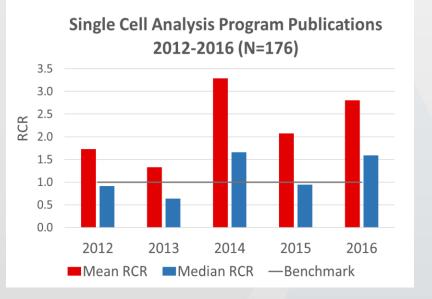
Timeline



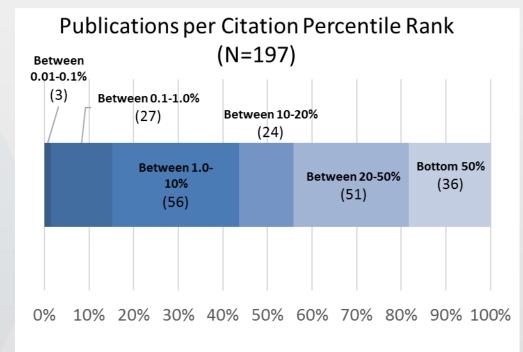
https://commonfund.nih.gov/singlecell

Next-gen tools and technologies

Fluorescent in situ sequencing (FISSEQ) of endogenous RNAs on a confocal microscope, directly within tissue.


inDrop: high throughput, inexpensive technique that gives every cell in a sample a unique genetic barcode

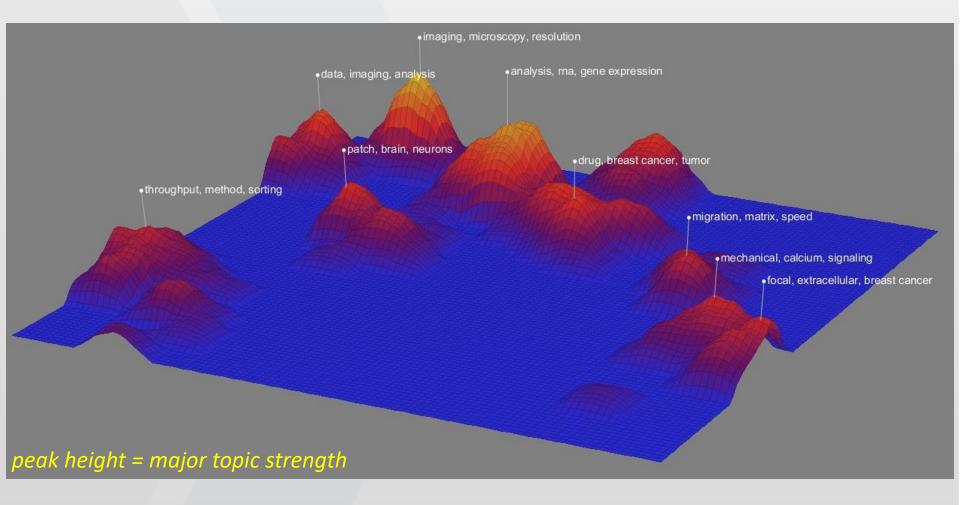
Methods and Results


- Bibliometrics
- Patents and Inventions
- NIH Program Staff Survey and Focus Group
- External Consultants and Industry Focus Groups
- Grantee Focus Groups
- Close Out Meeting & Survey

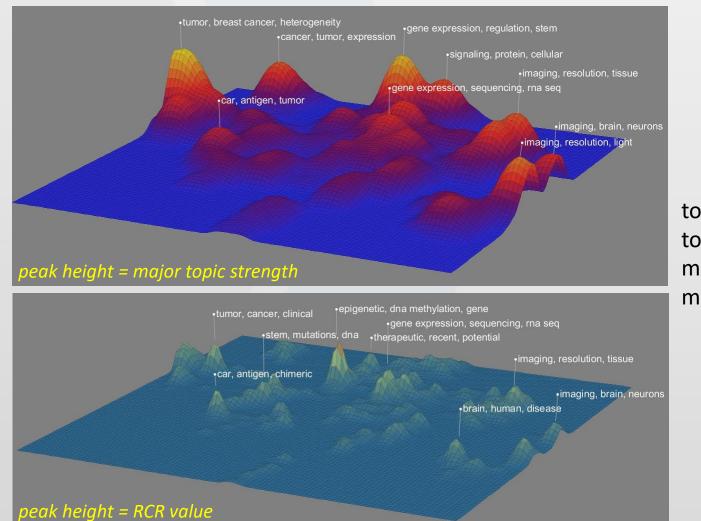
Bibliometrics

Mean Relative Citation Ratio (RCR) = 2.50 Weighted RCR ~522

44% of SCAP publications are in the Top 10% - based on ESI Category and year of publication

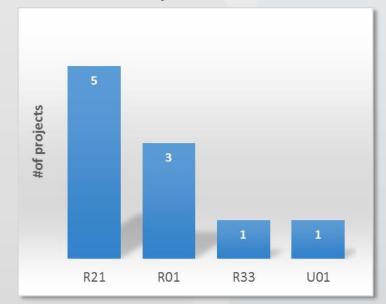

Relative Citation Ratio (RCR): A New Metric That Uses Citation Rates to Measure Influence at the Article Level. PLoS Sept. 2017.

Percentile Ranking of Your Publication using Web of Science and Essential Science Indicators – NIH Library


Bibliometrics – Top 10

Total Citations	RCR	Percentile	Year	Title	Journal
		-		Droplet barcoding for single-cell transcriptomics	
300	28.67		2015	applied to embryonic stem cells.	Cell
				Adult mouse cortical cell taxonomy revealed by single	
116	23.15		2016	cell transcriptomics.	Nat. Neurosci.
				Clonal evolution in breast cancer revealed by single	
268	17.37		2014	nucleus genome sequencing.	Nature
				Single-cell phenotyping within transparent intact	
213	16.09		2014	tissue through whole-body clearing.	Cell
		Between			Proc. Natl. Acad.
104	15.65	0.01-0.1%	2015	Acoustic separation of circulating tumor cells.	Sci. U.S.A.
		0.01-0.176		Hypoxia and the extracellular matrix: drivers of	
160	12.64		2014	tumour metastasis.	Nat. Rev. Cancer
				Highly multiplexed subcellular RNA sequencing in	
187	11.24		2014	situ.	Science
				Rotational manipulation of single cells and organisms	
27	9.78		2016	using acoustic waves.	Nat Commun
				Dynamics of epigenetic regulation at the single-cell	
59	9.66		2016	level.	Science
				A shared neural ensemble links distinct contextual	
45	9.25		2016	memories encoded close in time.	Nature

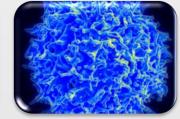
Topical clustering of SCAP Publications

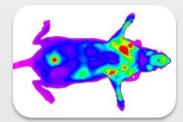

Bibliometrics – Citations

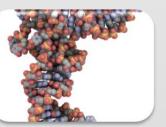
total pubs = 2,830 total pubs with RCR = 1,169 mean RCR = 1.89 median RCR = 0.92

Inventions and Patents

Number of projects that reported inventions and/or patents in RPPR




High throughput methods for neuronal phenotyping


Microfluidics platforms

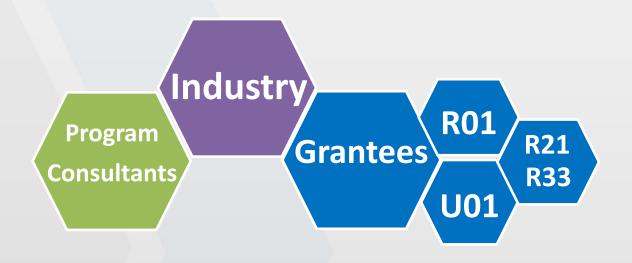
T cell immunity signatures, biomarkers of single T cells

Live animal imaging

Single molecule proteomics, transcriptomics

Laser lysis & mRNA expression method

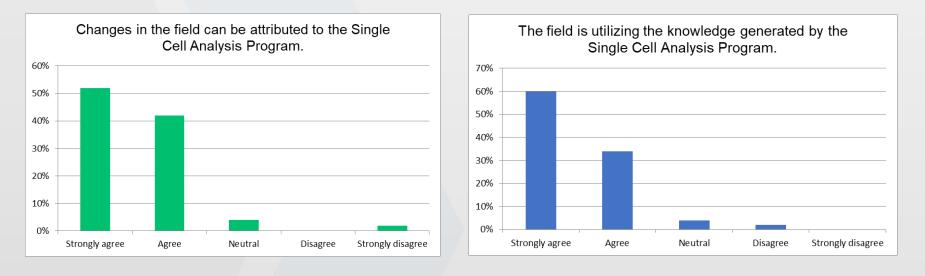
Survey of the SCAP Working Group


Purpose: Evaluate effectiveness in reaching goals and provide lessons learned for future programs, as well as shape the discussion of an in-person, focus group

- How successful was the program in achieving the major goals?
 - Major goals achieved (95% of respondents*)
 - U mechanism contributed to achieving (100%)
 - Divided about the Challenge (57% agreed, 43% were neutral)
- Obstacles to achieving major goals:
 - Changes in the field (33%)
 - Overlap with efforts outside the program (29%)
 - Goals and milestones not realistic (24%)
- Management Strategies:
 - Effective NIH working group meetings (86%), grantee meetings (71%), and the use of external advisers/consultants (71%)
 - Improvement needed milestone tracking (71%)

SCAP Working Group, Focus Group

- Evolution of the field of single cell analysis was catalyzed by the Common Fund SCAP
- Why was there 100% agreement in the survey that the U01 initiative contributed to achieving the program goals?
 - Goal was to understand cellular heterogeneity and glean fundamental principles
 - Network of U01 grants accelerated the field, as well as thinking of the NIH internally valuable information for other programs (e.g. BRAIN, HuBMAP)
- In the survey, why was the group divided about Challenge contributing to achieving the program goals?
 - Scientific question or problem being addressed needs to be very carefully considered. For future Challenges, the group suggested a data challenge, computational and number based metrics are easier to measure.
- Recommendations from the Focus Group:
 - Break out sessions for the U01 grant recipients, separate sessions for grantees & external experts at the Close Out meeting in June 2017


Focus Groups at Close Out Meeting

Overwhelming agreement from all groups:

- Most significant contributions are cutting edge technologies, approaches, and researchers in the field
- SCAP investment was needed to rapidly advance the field
- Having a Common Fund program legitimized the field
- A milestone driven plan for technology development and cutting edge research is difficult due to the unpredictability of the research

Close Out Survey

- Most significant contributions of this program to the field?
 - single cell sequencing
 - in situ imaging
 - live cell imaging
 - computational approaches
 - collaboration and integration
 - understanding and acceptance

In Closing

State of the Science

- SCAP catalyzed techniques, commercial solutions, and insights into biological heterogeneity in cancer, immunology and neuroscience
- Acceptance and interest of single cell analysis at the NIH due to SCAP, which has facilitated funding of single cell analysis projects
- Evaluation in 5 years time needed to measure impact

Management

- Use of R mechanism, challenging to promote strong collaborative community
- SCAP led to wider use of single cell analysis techniques at the NIH

Acknowledgements

Office of Strategic Coordination (OSC/OD) Richard Conroy, Ph.D., M.B.A. Ananda Roy, Ph.D. Tony Casco Amanda Greene Ph.D., M.P.H., R.N. Stephanie Courchesne Schlink, Ph.D. Policy, Planning, Evaluation, and Communications (PPEC) Team

Office of Portfolio Analysis (OPA/OD) Paula Fearon, Ph.D. B. Ian Hutchins, Ph.D.

<u>Trans-NIH Working Group</u>, including: Yong Yao, Ph.D. (NIMH) Andrea Beckel-Mitchener, Ph.D. (NIMH)