

NIH Investment in Single Cell Analysis Research in Human Cells and Tissues Jessica M. Smith, Ph.D.¹, Zorina Galis, Ph.D.², Pothur Srinivas, Ph.D., MPH^{2,} and Reiko Toyama, Ph.D.³ ¹Office of Strategic Coordination, Office of the Director ²National Heart, Lung, and Blood Institute, ³National Institute of Child Health and Human Development

Abstract

The NIH "Single Cell Analysis in Human Cells or Tissues" portfolio was evaluated by a trans-NIH working group to determine the current NIH investment in this area of research, as well as identify gaps in the portfolio. This analysis was conducted as part of strategic planning to determine whether the NIH Common Fund should support a program in this area. Grant information from IMPAC II was accessed to identify active projects, which were then manually assessed to determine whether awards involved single cell analysis in humans cells and tissue. This resulted in a validated list of 169 projects totaling \$97M, across 17 ICs. The main human cell and tissue types used are cancer, stem, immune, and neuronal/brain, with much of the adult human body not investigated. Primary methods for analyzing these cell and tissue types include transcriptomic, genomic, and imaging approaches. Most of these projects involve technology or method development and data generation.

Methods

To capture the active NIH portfolio in single cell analysis research in human cells and tissues, the NIH IMPAC II database was searched via Query, View, and Report (QVR) on April 27th, 2016. Project titles and abstracts from FY15 and FY16 (as of April 27th, 2016) were searched using the keyword "single cell", including all types of projects, competing and non-competing projects, active projects only, and excluding T, F, and K mechanisms (Figure 1). This search generated a list of 736 projects, which were filtered by text searching titles and abstracts (via IN-SPIRE) for the word "human" and selecting projects that were marked for use of human subjects (via QVR), resulting in 367 projects. 78 additional projects were added from NIH programs that support single cell analysis. The preliminary portfolio (prevalidation) contained 445 projects that were coded and validated by six individuals by using project titles, abstracts, specific aims, and summary statements (Figure 1):

- Single cell analysis proposed? Single cell analysis was defined as "the examination of the biological properties of a single cell, or an individual cell within a population, not characterization of clonal populations or populations of cells assumed to be same"
- Human cells or tissue? (excludes commercially available cell lines)
- Cell or Tissue Type: cancer, immune, stem, blood, neurons/brain, breast, lung, digestive, pancreas, eye, kidney, skin, fat, reproductive, bone, synovium, urinary tract, liver
- **Project Focus or Technology:** genomics, transcriptomics, proteomics, imaging, biological question, clinical application, physiological measurement

Results		140
Number of Projects	169	120
Number of Institutes/Centers	17	100
Investment	\$97 064 782	60
	<i><i><i><i>ψ</i>π,σστ,τσL</i></i></i>	40
For the FY15 and part of FY16 (up to April 27	7 th , 2016) the	20
cells and tissues, across 17 ICs. The main hi	uman cell and	0
issue types studied are cancer, stem, immur	ne, and	
neuronal/brain (Figure 2). Primary methods (of analysis	
Figure 2).	j approaches	
80 transci	riptomics	I he I
enom	nics	Coop
60 biologi	ical question	neur
40 clinical	l application logical measurement	Proje
20	omics	ussu
0		50 —
ancer mune stem blood blood brain brain steast eye eye idney skin	rat liver liver	45 — 40 —
A dig v k h in c	synce	- 35 - 30 -
E L	₽	jo 25 — jo 20 —
Figure 2. Human cell or tissue type, proj	ject focus or	* 15 — 10 —
technology. Correlations were generated us	sing IN-SPIRE.	5 — 0 —
A number of ICs invested in this portfolio of	research: NCI	cance
(\$24.1M, 52 projects), NIMH (\$14.3M, 15 pr	rojects), NIAID	г
(\$12.5M, 23 projects), and NIDDK (\$11.3M, the ten funders (Figure 2)	20 projects) are	ſ
the top lunders (Figure 3).		
		The
		analy
		matte
		• M
		de
CA MH AI DK HG AR HL NS GM HD DE EY	EB OD AG DA CX	• IVI • TI
		fra
Figure 3. Investment by Institute or Center (IC).		• A
The slight majority of investment in this portfo	olio was in 116	Sí in
esearch projects (\$47.5 million), while over S	\$45 million was	U
nvested through 44 cooperative agreements	and 4 research	The
he most frequently in this portfolio (69 project	cts, \$22.3M),	Was
ollowed by R21 grants (23 projects, \$3.8M),	then U01 grants	singl
22 projects, \$15.3M).		appr

Figure 4. Investment by funding mechanism.

majority of research projects (R) in this portfolio use cer, immune, and stem cells and/or tissues (Figure 5). perative agreements (U) largely involve studies using ron/brain, stem, immune, and blood cells and/or tissues. ects involving breast, digestive, fat, and bone cells and/or les are absent in the U mechanism.

Figure 5. Cell or tissue type and funding mechanism. Correlations were generated using IN-SPIRE.

Conclusions

following conclusions were made based on this portfolio ysis and additional strategic planning activities that uded communication with internal and external subject ter experts:

lost of these projects involve technology or method levelopment and data generation.

/luch of the adult human body is not being investigated. The investment in this area is relatively modest and ragmented.

Common Fund program based on common goals and hared scientific principles could have a transformative mpact on ability to integrate our current piece-meal inderstanding of the human body.

Human Biomolecular Atlas Platform (HuBMAP) program developed in response to this and is aimed at cacterizing and understanding organization of primary, le cells in human tissues using high throughput roaches.